CALCULATION GUIDANCE: Addition

CALCULATION GUIDANCE: Addition

This policy has been written to ensure consistency in the mathematical written methods and approaches to calculation across years 1-6 and EYFS through Early Learning Goals.

The 2014 national curriculum for mathematics aims to ensure that all pupils are to become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.

Times Tables/number facts Recall:

West Road has subscribed to Times Tables Rockstars and Mathshed as resource tools to support and challenge our pupils with the recall of their times tables and improve number knowledge. By the end of Year 4, pupils should be able to recall multiplication facts up to 12×12 at speed.

As part of a child's learning in calculation, they need to be taught how to select the best method according to the numbers. The hierarchy of thinking should be:

CALCULATION GUIDANCE: Addition

Rationale for KS1

Children in Years 1 and 2 will be given a really solid foundation in the basic building blocks of mental and written arithmetic. Through being taught place value, they will develop an understanding of how numbers work, so that they are confident in 2-digit numbers and beginning to read and say numbers above 100. A focus on number bonds, first via practical hands-on experiences and subsequently using memorisation techniques, enables a good grounding in these crucial facts, and ensures that all children leave Y 2 knowing the pairs of numbers which make all the numbers up to 10 at least. They will also have experienced and been taught pairs to 20 . Their knowledge of number facts enables them to add several single-digit numbers, and to add/subtract a single digit number to/from a 2 -digit number. Another important conceptual tool is their ability to add/subtract 1 or 10 , and to understand which digit changes and why. This understanding is extended to enable children to add and subtract multiples of ten to and from any 2-digit number. The most important application of this knowledge is their ability to add or subtract any pair of 2digit numbers using column addition/subtraction. Children will be taught to count in $2 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s , and will have related this skill to repeated addition. They will have met and begun to learn the associated $2 x, 3 x, 5 x$ and $10 x$ tables. Engaging in a practical way with the concept of repeated addition and the use of arrays enables children

CALCULATION GUIDANCE: Addition

to develop a preliminary understanding of multiplication, and asking them to consider how many groups of a given number make a total will introduce them to the idea of division. They will also be taught to double and halve numbers, and will thus experience scaling up or down as a further aspect of multiplication and division. Fractions will be introduced; halves, quarters and thirds.

Rationale for Lower KS2

In lower key stage 2, children build on the concrete and conceptual understandings they have gained in key stage 1 to develop a real mathematical understanding of the four operations, in particular developing arithmetical competence in relation to larger numbers. In addition and subtraction, they are taught to use place value and number facts to add and subtract numbers mentally and will develop a range of strategies. In particular, they will learn to add and subtract multiples and near multiples of 10,100 and 1000, and will become fluent in complementary addition as an accurate means of achieving fast and accurate answers to 3-digit subtractions. Standard written methods for adding larger numbers are taught, learned and consolidated. This key stage is also the period during which all the multiplication and division facts are thoroughly memorised, including all facts up to the 12×12 table. Efficient written methods for multiplying or dividing a 2-digit or 3-digit number by as single-digit number are taught, as are mental strategies for multiplication or division with large but friendly numbers, e.g. when dividing by 5 or multiplying by 20. Children will develop their understanding of fractions, learning to reduce a fraction to its simplest form as well as finding non-unit fractions of amounts and quantities. The concept of a decimal number is introduced and children consolidate a firm understanding of one-place decimals, multiplying and dividing whole numbers by 10 and 100 .

CALCULATION GUIDANCE: Addition

Rationale for UKS2

Children move on from dealing mainly with whole numbers to performing arithmetic operations with both decimals and fractions. They will consolidate their use of written procedures in adding and subtracting whole numbers with up to 6 digits and also decimal numbers with up to two decimal places. Mental strategies for adding and subtracting increasingly large numbers will also be taught. These will draw upon children's robust understanding of place value and knowledge of number facts. Efficient and flexible strategies for mental multiplication and division are taught and practised, so that children can perform appropriate calculations even when the numbers are large, such as $40,000 \times 6$ or $40,000 \div 8$. Fractions and decimals are also added, subtracted, divided and multiplied, within the bounds of children's understanding of these more complicated numbers, and they will also calculate simple percentages and ratios. Negative numbers will be added and subtracted.

CALCULATION GUIDANCE: Addition

	Objective	Concrete	Pictorial	Abstract
		Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar. \square	$\begin{aligned} & 2+3=5 \\ & 3+2=5 \\ & 5=3+2 \\ & 5=2+3 \end{aligned}$ Use the part-part-whole diagram as shown above to move into the abstract.
$\begin{aligned} & \text { - } \\ & \frac{1}{\pi} \\ & \underset{\sim}{2} \end{aligned}$		Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	Use a number line to count on in ones.	$5+3=8$

CALCULATION GUIDANCE: Addition

	Objective	Concrete	Pictorial	Abstract
		$6+5=11$ Start with the bigger number and use the smaller number to make 10.	$\begin{aligned} & 6+4=10 \\ & 10+1=11 \end{aligned}$	$6+5=11$
$\begin{aligned} & \sim \\ & \stackrel{N}{\pi} \\ & \underset{\sim}{\sim} \end{aligned}$		$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} (4+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.

CALCULATION GUIDANCE: Addition

	Objective	Concrete	Pictorial	Abstract
		Add together the ones first, then add the tens. Use the Base 10 blocks first before moving onto place value counters. $24+15=$	After physically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.	$\begin{aligned} & 24+15=39 \\ & 24 \\ & \frac{+15}{39} \end{aligned}$
$\begin{aligned} & N \\ & \stackrel{N}{\overleftarrow{N}} \\ & \underset{\sim}{1} \end{aligned}$		Make both numbers on a place value grid. Add up the units and exchange 10 ones for 1 ten.	Using place value counters, children can draw the counters to help them to solve additions.	$\begin{aligned} & 40+9 \\ & \underline{20+3} \\ & 60+12=72 \end{aligned}$

CALCULATION GUIDANCE: Addition

	Objective	Concrete	Pictorial	Abstract
$\begin{aligned} & \underset{\text { I }}{\text { m }} \\ & \frac{\pi}{0} \\ & \frac{1}{2} \end{aligned}$		Make both numbers on a place value grid. Add up the units and exchange 10 ones for 1 ten. As children move on to decimals, money and decimal place value counters can be used to support learning. NB By Year 4 children will progress on to adding four digit numbers.	100s Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding. NB Addition of money needs to have $£$ and p added separately.	$\begin{aligned} & 100+40+6 \\ & \frac{500+20+7}{600+70+3}=673 \end{aligned}$ As the children progress, they will move from the expanded to the compacted method. $\begin{array}{r} 146 \\ +527 \\ \hline 673 \end{array}$ 1 As the children move on, introduce decimals with the same number of decimal places and different. Money can be used here.
		Consolidate understanding using numbers with more than 4 digits and extend by adding numbers with up to 3 decimal places.		

CALCULATION GUIDANCE: Subtraction

	Objective	Concrete	Pictorial	Abstract
		Use physical objects, counters, cubes etc. to show how objects can be taken away.	Cross out drawn objects to show what has been taken away.	$4-2=2$
		Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. $13-4=9$	Count back on a number line or number track Start at the bigger number and count back the smaller number, showing the jumps on the number line.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.
		Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference. Use basic bar models with items to find the difference.	Count on to find the difference. Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them. Draw bars to find the difference between 2 numbers.	Hannah has 8 goldfish. Helen has 3 goldfish. Find the difference between the number of goldfish the girls have.

CALCULATION GUIDANCE: Subtraction

	Objective	Concrete	Pictorial	Abstract
$\begin{aligned} & N \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\sim} \end{aligned}$		$75-42=33$ Use Base 10 to make the bigger number then take the smaller number away. Show how you partition numbers to subtract. Again make the larger number first.	 Draw the Base 10 or place value counters alongside the written calculation to help to show working.	$\begin{gathered} 47-24=23 \\ -40+7 \\ -\frac{2 a+4}{20+3} \\ \hline \end{gathered}$ This will lead to a clear written column subtraction.

CALCULATION GUIDANCE: Subtraction

CALCULATION GUIDANCE: Subtraction

| | Objective | Concrete | Pictorial | Abstract |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | | Now look at the tens, can I take away 8
 tens easily? I need to exchange 1
 hundred for 10 tens. | | |

CALCULATION GUIDANCE：Multiplication

	Objective	Concrete	Pictorial	Abstract
		$3 \cdot 3+3$ Use different objects to add equal groups．	There are 3 plates．Each plate has 2 star biscuits on．How many biscuits are there？ $2+2+2=6$ $5+5+5=15$	Write addition sentences to describe objects and pictures． $2+2+2=6$
$\begin{aligned} & N \\ & \underset{\sim}{\pi} \\ & \underset{\sim 1}{\sim} \end{aligned}$		Create arrays using counters／cubes to show multiplication sentences．	Draw arrays in different rotations to find commutative multiplication sentences． Link arrays to area of rectangles．	Use an array to write multiplication sentences and reinforce repeated addition． $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

CALCULATION GUIDANCE: Multiplication

CALCULATION GUIDANCE: Multiplication

	Objective	Concrete	Pictorial	Abstract
		Show the link with arrays to first introduce the expanded method.		Start with long multiplication, reminding the children about lining up their numbers clearly in columns. $\begin{aligned} & 18 \\ & \times \frac{13}{24}(3 \times 8) \\ & 30(3 \times 10)) \\ & 80(10 \times 8) \\ & \frac{100}{234}(10 \times 10) \\ & \hline \end{aligned}$
$\begin{aligned} & \stackrel{0}{\omega} \\ & \dot{\bar{c}} \\ & \underset{\sim}{\infty} \end{aligned}$		Children can continue to be supported by place value counters at the stage of multiplication. It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.	Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	Start with long multiplication, reminding the children about lining up their numbers clearly in columns. If it helps, children can write out what they are solving next to their answer. This moves to the more compact method. $\begin{array}{r} 1342 \\ \times \quad 18 \\ \hline 13420 \\ 10736 \\ \hline 24156 \end{array}$

CALCULATION GUIDANCE: Division

	Objective	Concrete	Pictorial	Abstract
	$\begin{aligned} & \stackrel{\infty}{i} \\ & \stackrel{0}{0} \\ & \stackrel{\pi}{n} \end{aligned}$	I have 8 cubes, can you share them equally between two people?	Children use pictures or shapes to share quantities.	Share 8 buns between two people. $8 \div 2=4$
$\begin{aligned} & \stackrel{N}{\lambda} \\ & \stackrel{1}{\overleftarrow{N}} \\ & \underset{\sim}{\sim} \end{aligned}$		Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $\begin{aligned} & 10 \div 5=? \\ & 5 \times ?=10 \end{aligned}$	$10 \div 5=2$ Divide 10 into 5 groups. How many are in each group?

CALCULATION GUIDANCE: Division

	Objective	Concrete	Pictorial	Abstract
		Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rr} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 5 \times 3=15 \\ & 3 \times 5=15 \\ & 15 \div 5=3 \\ & 15 \div 3=5 \end{aligned}$
		Use place value counters to divide using the short division method alongside. $96 \div 3$ $42 \div 3$ Start with the biggest place value. We are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for 10 ones and then share the \qquad ones equally among the groups. We look at how many are in each group.	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with no remainder.

CALCULATION GUIDANCE: Division

	Objective	Concrete	Pictorial	Abstract
$\stackrel{\bullet}{n}$		$14 \div 3=$ Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder.	Complete written divisions and show the remainder using r.
$\stackrel{\grave{\pi}}{\stackrel{1}{0}}$				Move onto divisions with a remainder. Once children understand remainders, begin to express as a fraction or decimal according to the context. $\begin{gathered} 186{ }^{1 / 5} \\ 59^{9^{4} 3} 1 \end{gathered}$

	Objective	Concrete	Pictorial	Abstract
$\begin{aligned} & \bullet \\ & \stackrel{0}{\pi} \\ & \underset{\sim}{\star} \end{aligned}$				Children will use long division to divide numbers with up to 4 digits by 2 digit numbers.

